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Five different finite difference schemes, first-order upwind, skew upwind, second-order 
upwind, second order central differencing, and QUICK, approximating the convection terms 
in the transport equation with fluid motion, have been studied. Three simple test problems are 
used to compare the performances by the five schemes for high cell Peclet number flows; they 
are also used to demonstrate the restraints on the accuracy of the numerical approximations 
set by the types of the boundary conditions, by the presence of the source term in the flow 
region, and by the skewness of the numerical grid lines. The basic reasons behind the spurious 
oscillations in a numerical solution are studied. Among all live schemes studied, the second- 
order upwmd is found to be, in general, the most satisfactory. 0 1985 Academic PW, IK. 

1. INTR~DUOTI~N 

The development of numerical methods for solving the transport equations with 
convection-dominated fluid motion has been a subject of concern for more than 
two decades. For the shear layer flows, numerical predictions are now well 
established. There are a number of accurate numerical procedures which have been 
shown to be successful, and most of the difficulties associated with such predictions 
relate directly to the lack of total physical understanding and consequent inade- 
quacies in the various turbulence models used. However, in the case of complex 
flows which fail to satisfy the boundary layer approximation, and which are in 
general elliptic, the situation is not so clear. The accuracy of a numerical prediction 
for this kind of problem rests not only on the accuracy of the physical model but, 
even more basically, on the accuracy of the numerical techniques used to solve the 
equations which embody the model. The desire to use higher-order approximations 
and small mesh sizes to ensure accuracy must be balanced against limitations 
imposed by the complexity of the problem being solved, the availability of the com- 
puting equipment, and the stability of the solution algorithm. 

Eearly attempts using the second-order central difference approximation to the 
terms in the governing equations representing convection failed to produce wiggle- 
free solutions for high values of the Reynolds (or Peclet) number [ 1,2]. It was 
found that these wiggles could be eliminated by using one-sided (upwind) tirst- 
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order finite difference approximations to the derivatives in the convection terms. 
Solutions for high Reynolds number flow have been published by many 
investigators, e.g., [3-153. It is recognized that first-order upwind difference 
approximations can generate significant truncation errors. The most serious one is 
the production of a diffusive effect which augments the effects of viscosity; this 
numerical diffusion in elliptic flows plagues the computational fluid mechanician. 
For example, in the pioneering work by Allen and Southwell [S] the first-order 
upwind approximation was employed in a vorticity-stream function solution to the 
Navier-Stokes equations for viscous flow around a cylinder; the results show that 
the downstream eddies are too short and they vary very little between Re = 100 and 
1000 on a coarse mesh. 

deVah1 Davis and Mallinson [6] pointed out that when the velocity vector is 
more than marginally skewed relative to the numerical grid lines and the so-called 
cell Peclet number, lpedxl (= [VI AX/ ), v w h ere V is a relevant fluid velocity, AX is 
the mesh width, and v is the physical diffusivity for the transported quantity), 
significantly exceeds unity in regions where diffusive transport normal to the flow 
direction is important, this error may become so dominant as to obscure the effects 
of physical diffusivity on the flow. Also, Castro [7] showed that in regions of com- 
plex flow, particularly near sharp corners, the size of the truncation error associated 
with the first-order upwind scheme cannot easily be reduced to insignificance, but 
the errors may be simply convected downstream leading to poor predictions over 
the rest of the flow field. 

In addition, Raithby [S] and Leonard [9] have shown that in the presence of 
source terms, large errors may result from the first-order upwind solutions for a 
convection-dominated flow. These conditions may prevail in the case of recir- 
culating flows in general and turbulent ones in particular. 

The alternative is to use more complex and sophisticated discretization methods 
for convection. Several schemes are currently available. One such method, proposed 
by Raithby [lo], is termed skew upwind differencing. The skew upwind differenc- 
ing scheme, although like the conventional upwind scheme formally only first-order 
accurate, yields a significant reduction in numerical diffusion by taking the direction 
of the velocity vector into account. Another method, proposed by Leonard [9], is 
called QUICK (Quadratic Upstream Interpolation for Convective Kinematics). 
The QUICK scheme is based on the’use of upstream-shifted parabolic interpolation 
for every control volume surface on the computational grids and is free from (the 
second-order) numerical diffusion. Both skew upwind and QUICK have been 
examined by Leschziner [ 111 and by Leschziner and Rodi [ 121 for some idealized 
cases as well as for unconfined recirculating flows. The schemes are found to be 
superior to the conventional upwind simulation for the cases they studied. 
However, the solutions obtained by using both formulations have shown under- 
and over-shoots. It should also be noted that the skew upwind scheme does not 
resolve the difficulties associated with the source term when applying the first-order 
upwind approximations; Leonard [9] has shown that QUICK does give good 
resolution in the presence of the source term. 
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Another finite difference approximation which has attracted comparatively little 
attention was the one used by Atias et al. [ 143. They studied a second-order 
upwind scheme for discretizing the convection terms in the vorticity transport 
equation and found that it has the potential of yielding sufftcient accuracy. No 
systematic study has been done for this scheme as yet, but Gupta and Manohar 
[lS] gave unfavorable comments on the grounds of a von Neumann-type analysis. 

The difliculty of a numerical simulation is further compounded by the fact that 
for cell Reynolds number Re dx greater than unity, difference schemes of higher- 
order formal accuracy do not necessarily promise smaller total error. Cheng and 
Shubin 1161 studied the one-dimensional, steady-state Burgers equation. They 
found that the error in computational results with formally second-order accurate 
algorithms and coarse meshes varies widely, and does not increase as Ax* or 
(Re Ax)*. Furthermore, the first-order accurate algorithm can provide essentially 
the same solutions as do some of the second-order algorithms; such results can be 
either better or worse than those offered by other formally second-order schemes. 
Thus, they concluded that the formal order of accuracy of a difference algorithm 
may not reflect the magnitude of computational errors for large Re Ax. Stubley et 
al. [17] demonstrated that it is not just the error introduced in the approximation 
of local function values or gradients by a particular discretization scheme which is 
important, but also the nature of the way this local error is propagated by the dis- 
cretized version of the convection and diffusion terms in the differential equation. 

In this study, attempts have been made to clarify some of the ambiguities cited 
above associated with the numerical simulations of a high cell Peclet number com- 
plex flow problem as well as to find a comparatively accurate finite difference 
scheme to get the final solution of a discretized equation. The restraints set by the 
size of the cell Peclet number on the effectiveness of a given finite difference scheme 
is studied first. The accuracy of a finite difference approximation to an idealized 
flow problem in the presence of the source term is then analyzed. Comparisons are 
made by studying the solutions by different schemes for the test problems. The 
effects of numerical diffusion due to the inclination of the computational grid lines 
in a multidimensional flow field are also compared among different schemes. The 
influences of the different boundary conditions on the mathematical accuracy and 
on the physical reality in the numerical solutions are examined. One objective here 
is to shed some light on the relative merits of several schemes and to contrast their 
performances under both mild and stringent flow conditions. Five different finite 
difference schemes approximating the convection terms are analyzed: first-order 
upwind, skew upwind, second-order central differencing, second-order upwind, and 
QUICK. Test cases are chosen to be simple but also to contain the most relevant 
information. 
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2. NUMERICAL PROCEDURES 

In what follows, exclusive use of the second-order central differencing will be 
adopted to approximate the diffusion terms in the governing equation, e.g., 

824 
ax2 i,j = 

4i+ lj - 2#i,j + #i- I,j + 

Ax2 
T 

d> (1) 

where T,is the truncation error resulting from replacing the diffusion term with the 
finite difference approximation; the notation used in Eq. (1) is shown in Fig. 1. 

As to the finite difference approximation to the convection terms, the following 
schemes will be considered and tested: 

(a) first-order upwind 

a(4) 
-= 

ax i,j 

ui,j4i,j- ui- IjQli- I,j + 

Ax 
T 

CY for u > 0, 
- 

= ui+ l,jbi+ lj- ui,jdi,j+ 

Ax 
T 

EV for u < 0, 
(2) 

where T, is the truncation error inherent in replacing the convection term with the 
finite difference approximation. 

(b) second-order central differencing 

a(d) - = 

ax i,j 

ui+ I,jbi+ lj- ui- ljtii- 1,j + 

2Ax 
T 

C. 

i,j+l 

r---- 

------ 
I 

ii-I.1 

-AX ---d 

i.i li+l,j 
WX 

I 

I 
L----- --- 

i,j-1 

(3) 

FIG. 1. Notation used in a computational mesh. 
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(c) second-order upwind 

a(4) 
- ax ij =&(3”i,j4i,j-4ui- I,j#i- I,j+ ui-2,j4i-22,j) + TCT for u > 0, 

de (4) 

=~(-~i+~,j(i+~,j+4~i+,“g,+,,-3ui,j(i,j)+T,, for u<O. 

(d) QUICK 

+ $Ui- 2,j4i- 2.j) + Tc, for 2.420, 
(5) 

- iui- l,jdi- l,j) + Tc, for u < 0. 

As to the skew upwind differencing, it reduces to the original first-order upwind 
scheme in a one-dimensional problem. For a multi-dimensional flow problem, it 
can reduce the numerical diffusion by taking the direction of the velocity vector into 
account, and this will be studied later on. 

The SOR type of iterative method is used to obtain the convergent solutions for 
all test cases. The relaxation factor may be larger or smaller than 1, depending 
upon the scheme used and the value of cell Peclet number, as discussed in [24]. 

3. NUMERICAL ACCURACY AND CELL PECLET NUMBER 

It is well known by now that numerical schemes (to any finite degree of 
accuracy) introduce numerical diffusion and dispersion in roughly the same way as 
physical diffusion and dispersion in phenomena of fluid flow [ 18, 191. This may be 
examined by expanding the finite difference equation in Taylor series to get the 
original differential equation plus higher-order terms which represent the truncation 
errors introduced in the course of approximation. The resulting equation is called 
the modified equation. Table I shows the coefficients of the first six derivatives in 
the modified equation 

where HOT represents the higher-order terms in Taylor series, derived by the com- 
bination of one of the finite difference approximations discussed in Eqs. (2) to (5) 
to the convection term and Eq. (1) to the diffusion term of the one-dimensional, 
steady-state linear Burgers equation 

4, = vdxx, u, v = constants > 0. (7) 
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TABLE II 

Values of a: and /3 in Eq. (9) by Substituting the Fourier 
Component of Wavenumber k = r/Ax 

Method a B 

First-order upwind -0.83 
Second-order upwind -8.07 
Second-order central -0.83 
QUICK 1.82 

0.23p,,,-0.55 
-1.59p,,,-0.55 

-0.55 
-o.40pe,,-0.55 

If we expand the dependent variable $ in Eq. (6) as a Fourier series in the x- 
direction, we obtain 

The Fourier component of the shortest wavelength resolved by a finite difference 
mesh is of wavelength I= 2 Ax. The corresponding wavenumber is k,,, = njdx. The 
longest wavelength is I,,, = L, which is the total length spanned by the meshes. The 
corresponding minimum wavenumber is kmin = 27c/L. If one substitutes a Fourier 
component bj = aj&” into Eq. (6), then one can easily find that all the schemes in 
Table I except the first-order upwind give good approximations to Eq. (7) for 
k = kmin with the errors proportional to l/N* (L = N Ax). On the other hand, for 
k=kn,,, no scheme can yield reasonable accurate approximations. This may be 
seen from Table II, which shows the values of c1 and fi for the Fourier components 
with k = k,,,, for the various schemes, where 

Pb) 

All the values of a and /I are at least of the order of unity; in the region where 
those high-wavenumber Fourier components are important for the solution, the 
numerical diffusion and dispersion are by no means negligible. Furthermore, this 
difficulty cannot be resolved by using formally a higher-order scheme. 

For a high Peclet number flow problem the convection terms are dominant in the 
main part of the flow domain; the real solution might vary rapidly in some thin 
regions where the convection terms are balanced by the diffusion terms due to, for 
example, the restraint imposed by the boundary conditions. Hence, in a numerical 
viscous flow simulation the mesh size should be line enough so that the ratio of 
u~,/(v~,,) in Eq. (7) is of the order of unity, at least at the highest resolvable 

501/51/3-l 
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wavenumber, k = k,,, = n/Ax. If the ratio is much larger than one, then the convec- 
tion term can never be balanced by the viscous term in all the numerically 
resolvable scales. If a Fourier component bj = a,e “lx is substituted into ud,/( v$,,) 
and kj = k,,, is used, then as pointed out by MacCormack and Lomax [20], the 
condition for a unity ratio between the convection and the diffusion terms is 

MAX 
P t-AX =-=0(l). 

V 

At high Peclet numbers, the mesh size cannot, with present computers, be made 
line enough to fulfill this condition. The viscous diffusion at wavenumbers higher 
than those resolved by the numerical approximation must be accounted for through 
modeling. Hence, a suitable finite difference scheme for a high Peclet number flow 
will be one that maintains good accuracy in the convection-dominated region; in 
the regions where the convection terms and the viscous terms in the original dif- 
ferential equation should balance each other, which cannot be done exactly 
numerically, the truncation error should enhance the weight of the viscous terms. 
By doing this, though the tine structure of the real solutions cannot be resolved due 
to the large error introduced in the high-wavenumber components part, the results 
obtained from the numerical approximation are, in general, physically correct and 
useful; the disturbances arising from an inaccurate numerical simulation in a thin 
layer can be damped out without propagating into the main region. As will be 
shown later on, the truncation error of a given finite difference scheme may or may 
not be able to increase the viscous effects where needed. Hence, a formally higher- 
order scheme does not necessarily perform better for the high cell Peclet number 
problems, due to the inadequate resolution to the rapidly varying solution in the 
thin layers. 

4. ONE-DIMENSIONAL TEST PROBLEMS 

Test Problem I: Boundary Layer Type Flow 

Equation (7) with the boundary conditions I$ = 0 at x = 0 and 4 = 1 at x = 1 is 
considered here. The exact solution of this problem is 

(11) 

where pe=ul/v is the Peclet number. For small to moderate pe, 4(x) displays a 
solution which varies rather smoothly throughout the entire domain. However, as 
pe is increased much larger beyond unity, the solution becomes one of boundary 
layer type in that 4(x) is virtually zero except in the region near x = 1, within a thin 
layer of thickness 8% l/p, wherein the entire variation in the solution is contained in 
this layer; upstream of this boundary layer, the flow is entirely convection 
dominated. 



TABLE IIIa 

Numerical Solutions to Test Problem I 
(Number of Grid Points = N + 1 = 11, p. dx = 0.2) 

Eq. (11) 

First-order 
upwind 

Second-order 
upwind 

Second-order 
central 

QUICK 

0 3.47 
E-2 

0 3.85 
E-2 

0 3.58 
E-2 

0 3.45 
E-2 

0 3.53 
E-2 

7.70 0.129 0.192 0.269 0.363 0.478 0.619 0.790 1.00 
E-2 

8.48 0.140 0.207 0.287 0.383 0.498 0.636 0.801 1.00 
E-2 

7.88 0.131 0.195 0.272 0.367 0.482 0.622 0.792 1.00 
E-2 

7.67 0.128 0.191 0.268 0.362 0.477 0.618 0.790 1.00 
E-2 

7.77 0.129 0.193 0.270 0.364 0.479 0.619 0.791 1.00 
E-2 

TABLE IIIb 

Numerical Solutions to Test Problem I (11 Grid Points, pedx = 10.0) 

Eq. (11) 

First-order 
upwind 

Second-order 
upwind 

Second-order 
central 

QUICK 

0 8.19 
E-40 

0 3.90 
E-10 

0 -3.46 
E- 10 

0 -4.41 
E-2 

0 1.06 
E-5 

1.80 3.98 
E-35 E-31 

4.65 5.12 
E-9 E-8 

- 3.57 3.34 
E-10 E-9 

2.21 -7.72 

E-2 E-2 

1.27 -2.28 

E-4 E-4 

8.76 

E-27 

5.64 

E-7 

6.59 

E-8 

7.17 

E-2 

9.22 

E-4 

1.93 
E-22 

6.21 
E-6 

1.05 
E-6 

- 1.52 
E-l 

-2.79 

E-3 

4.25 

E- 18 

6.83 

E-5 

1.65 

E-5 

1.83 

E-l 

9.21 
E-3 

9.36 
E- 14 

7.51 
E-4 

2.59 
E-4 

-3.19 
E-l 

- 2.96 

E-2 

2.06 
E-9 

8.26 
E-3 

4.07 
E-3 

4.35 
E-l 

9.58 
E-2 

4.54 1.00 
E-5 

9.09 1.00 
E-2 

6.38 1.00 
E-2 

-6.96 1.00 
E-l 

-3.09 1.00 
E-l 

TABLE IIIc 

Numerical Solutions to Test Problem I (11 Grid Points, pedr = 100) 

Eq. (11) 0 0 0 0 0 0 0 0 0 0 1.00 

First-order 0 1.05 1.01 3.19 1.45 9.69 9.61 9.71 9.80 9.90 1.00 
upwind E-16 E-15 E-15 E-12 E-11 E-9 E-7 E-5 E-3 

Second-order 0 -5.05 -9.06 -1.40 -2.11 -3.03 1.47 2.92 4.41 6.64 1.00 
upwind E-11 E-11 E-10 E-10 E-10 E-9 E-7 E-5 E-3 

Second-order 0 -4.15 1.69 -4.32 3.53 -4.52 5.52 -4.72 7.67 -4.95 1.00 
central E-l E-l E-l E-l 

QUICK 0 2.46 2.51 -2.65 8.94 -1.70 4.09 -8.85 2.01 -4.46 1.00 
E-5 E-3 E-3 E-3 E-2 E-2 E-2 E-l E-l 
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The numerical solutions to this test problem by the combination of Eq. (1) and 
each of the schemes described in Eq. (2) to Eq. (5) for different values of cell Peclet 
number are contained in Tables IIIa-c. For p, dX = u Ax/v = 0.2 the solutions by 
QUICK and the second-order central differencing are the most accurate while that 
by the second-order upwind is also very acceptable. For pedx less than 1, the 
Fourier components with the wavenumber equal to or larger than k,,, are not 
crucial for I$ in (1 1 ), and the leading truncation error term of a finite difference 
approximation is representative of the order of total numerical error. In Table IIIa 
the first-order upwind yields the solution with the largest error due to the introduc- 
tion of the numerical viscosity (see Table I) to the second derivative term in 
Eq. (7). It is noted that among the four different schemes described in Eqs. (2) to 
(5), only the first-order upwind always gives a diagonally dominant coefficient 
matrix for the set of difference equations. For pedl = 10 and 100, both QUICK and 
the second-order central differencing show solutions with wiggles; the magnitudes of 
this spurious oscillation in the solution by the second-order central differencing are 
generally much larger than those by QUICK. Yet, throughout the whole range of 
P edx, the solutions by both the first-order upwind and the second-order upwind 
schemes are wiggles-free. This may be analyzed via studying the roots of the charac- 
teristic equation associated with a specific scheme. For example, if QUICK is used, 
the resulting finite difference equation for Eq. (7) at the grid point i is 

The exact solution of Eq. (12) is given by [21, Sect. 8.511 

~i=y*zI-‘+y*Z:~1+y3Z:-1, (13) 

where Z,, Z2, and Z3 are zeros of the characteristic equation 

P 
~-~1+~Pe~x)Z+(2+~pe~x)z~-(1-~pedx)z3=0. 

These zeros are 

z, = 1, 
z 

22 

The constants y 1, y2, and y3 are determined by the two boundary conditions 4, = 0, 
QIN+ r = 1, and the value of d2 which is calculated by a starting calculation method. 
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To compute & the first-order upwind scheme may be used for both QUICK and 
the second-order upwind schemes; it is found that, for this specific problem, the 
solutions obtained in this way are comparable with other more accurate strategies 
such as the one which will be discussed later on for the flow problem with a source 
term. 

Equation (14) shows that, for the problem considered, QUICK gives the 
solutions with wiggles for pe dx > 8/3; this is because one of the roots in Eqs. (15) is 
of the negative sign for pedx > j. Here p, dx = 9 is called the critical cell Peclet num- 
ber for QUICK. Table IV shows the roots of the characteristic equations and the 
values of the critical cell Peclet number associated with the various schemes for the 
test problem I. Those roots of both the first-order upwind and the second-order 
upwind are always positive; the solutions for the model problem by the two 
schemes are wiggle-free. The critical cell Peclet number for the second-order central 

TABLE IV 

Roots of Eq. (13) Using Four Different Schemes 

Scheme Roots 
Critical Value 

of Pe dx 

First-order 
upwind 

1 fP.h 

1 

co 

Second-order 
upwind 

Second-order 
central 

QUICK 

1+Pedx 
2 

l-p. 
2 
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differencing is, as is well known, 2. When pedx is far larger than unity the two 
characteristic roots of the second-order central differencing are very close to each 
other in magnitude. Hence, as was shown by Gresho and Lee [22], the magnitudes 
of the oscillation in the solution are dependent upon whether the total number of 
mesh points is even or odd. It should be emphasized that, while both second-order 
central differencing and QUICK produce the solutions with wiggles, there are some 
differences between these two methods. As the Peclet number is increased, the 
wiggles produced by central differencing are more serious than those produced by 
QUICK. Nevertheless, it is clear that, for this model problem, with high values of 
P CZAX? neither the second-order central differencing nor QUICK will be very satisfac- 
tory; the higher-order terms in the modified equations cannot increase the weight of 
the diffusion term adequately to balance the convection term in the boundary layer 
without letting the disturbances propagate into the main region; therefore, the 
numerical solutions oscillate. On the other hand, the solutions by both the lirst- 
order upwind and the second-order upwind schemes are wiggle-free and acceptable; 
the second-order upwind scheme produces more accurate simulations than the lirst- 
order one for the whole range of pe dx. Hence, the truncation errors in these two 
schemes are able to help damp out the disturbances where needed more effectively 
than those in QUICK and the second-order central differencing. 

It is noted that Tables I and II, which show the effects of leading truncation error 
terms, seem to suggest that second-order central differencing and QUICK are 
favorable and the two upwind differencings unfavorable for high cell Peclet number 
calculation, which is in opposition to the results just presented. Tables I and II are 
designed only to demonstrate the difficulty all the methods have in handling high- 
wavenumber variations. To judge which of the methods is better, based on a 
Fourier analysis, one must extend the modified equation (5) to consider the higher- 
order derivative terms. This cannot be done analytically. An analysis such as the 
one presented in this section may be more appropriate. It is clear by comparing 
Tables I, II, and IV that the formal order of accuracy loses its meaning for high 
P edx numerical simulation since the leading truncation error term no longer 
represents the real size of the numerical error. For a low pedx flow, however, the 
formal order of accuracy is still a good basis to judge the relative accuracy between 
two schemes with different order, e.g., the first-order upwind and QUICK. 

Another aspect concerning the validity of the numerical solutions with large 
values of the cell Peclet number which is worth commenting on is that no scheme is 
accurate if a quantity such as 4, is to be calculated at the right-hand boundary 
point for this model problem. This is, again, due to the fact that the high-wavenum- 
ber Fourier components, which are important at the right-hand boundary for high 
P eAX flow, cannot be evaluated accurately in the course of the numerical 
approximations by a finite difference scheme. Here, dN+ 1 = 1 and the smallest value 
of $N that one would like to see is zero (otherwise the wiggles start to appear). 
Hence, the numerical calculation for dX at x = 1 is, at best, (dN+ 1 - q5,,,)/Ax = l/Ax. 
This result is independent of the Peclet number, contrasting to that which is 
obtained from the analytical solution which increases directly with pe Ax [22]. 
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Test Problem II: Flow with Source Term 

Leonard [9] chose the model problem 

u, v = constants > 0, (lea) 

(16b) 

(16~) 

to study the accuracy of the finite difference approximation to high pe dX flow in the 
presence of a source term. Further investigation is given here for the same problem 
by varying the distribution of S(x) to determine the limit of an adequate numerical 
simulation as well as to compare the performances among different schemes. The 
basic form of S(x) used here is 

S(x) = ax + b, o<x<x,, 

= -(~x,+b)x+(xt+x2) (17) 
(ax1 + b), x1 Gxdx, +x2, 

x2 
x2 

as is shown in Fig. 2. 
For the extreme case of pedx + co, Leonard [9] has shown that the solutions 

given by QUICK are much better than those by the first-order upwind which 
follow closely the exact solution of pedx = 2, and those by the second-order central 
differencing which are more susceptible to changes in the downstream boundary 
condition; here we concentrate on the comparisons between the solutions by the 
second-order upwind and by QUICK schemes for pe dX = lo*. In Figs. 3 the influen- 
ces of the in-flow and out-flow boundary conditions on the numerical accuracy are 
investigated. In Figs. 4, the high-wavenumber variation effects of the source term 
will be studied. 

FIG. 2. Distribution of source term in Eq. (17). 
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FIG. 3c. Numerical solutions to test problem II (downstream boundary condition: d = 0). Starting 
calculation method: dl = I$( -AX/~) = -q&, & by first-order upwind. 

For a source spanning through several mesh lengths, both schemes can give 
accurate solutions for pe dx + co; the only thing that should be handled carefully is 
the strategy for the starting calculation. Figure 3a show the solutions calculated by 
both schemes using the first-order upwind scheme to calculate the first unknown 
value of the dependent variable, &. Figure 3b shows the solutions by both schemes 
putting the left-hand boundary point, x= 0, in the middle of the first numerical 
mesh interval and assigning the value of 4 at the first grid point, #1, by linearly 
extrapolating the values of &, (which is located at x= AX/~) and the boundary 
value at x = 0. Here, 4 = 0 at x = 0, hence d1 = -&. The solutions calculated in this 
way, as was suggested by Leonard [9], are more accurate than those shown in 
Fig. 3a for both schemes. Also, in both Figs 3a and b, the accuracy of the solutions 
by the two schemes are comparable. An interesting study concerning the treatment 
of boundary points can be found in [23]. Figure 3c shows what changes are 
produced in the numerical results if 4 =0, not 4, =O, is used as the downstream 
boundary condition. For this example, the solution by the second-order upwind 
scheme is more satisfactory than that by QUICK. The restraint imposed by the 
boundary condition at the downstream end forces the numerical solution by 
QUICK to show oscillations because the higher-order terms in the modified 
equation fail to help damp out the disturbances in that thin layer. 

581/57/3-8 
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FE. 4a. Numerical solutions to test problem II (downstream boundary condition: dqi/dx=O). 
Starting calculation method: q5, = i(O) = 0, & by first-order upwind. 
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FIG. 4b. Numerical solutions to test problem II (downstream boundary condition: 4 = 0). Starting 
calculation method: q5, = Q(0) = 0, & = &lx) = exact solution. 
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Figure 4a compares the two numerical solutions with the exact solution for a 
faster varying source term spanning through two mesh lengths. Neither of the two 
numerical solutions is totally accurate for all grid points but the one by second- 
order upwind is better. Figure 4b shows the numerical solutions by the two 
schemes against the exact solution for a more stringent source distribution. For this 
problem the Fourier components with the wavenumber equal to or higher than 
n/Ax are important to the exact solution, and, as was discussed previously, they 
cannot be resolved satisfactorily by the finite difference approximations; the 
solutions by both schemes carry unacceptably large errors even when the exact 
value of & is assigned to eliminate any error involved in the starting calculation 
method. This demonstrates well the fact that any attempt to accurately simulate a 
flow with the length scale 2 Ax (or less) is out of the question; a more relined mesh 
must be used for all schemes considered here. On the other hand, for a problem 
with mild source distribution and downstream boundary condition such as that 
shown in Fig. 3b, an accurate numerical approximation is possible for large pedx 
because the diffusion term in Eq. (16a) plays no important role in the whole flow 
region. 

5. TEST PROBLEM III: TWO-DIMENSIONAL FLOW 

To study the problem of the numerical diffusion in a multi-dimensional flow, the 
following idealized case is considered first: 

4, + 4, = 0, 

w, Y) = lo(JY”, 

O<x<l,O<y<l, UW 

O<y<l, (18b) 

4(x, 0) = 100 -& ( ) n O<x<l, (18~) 

where cot 8 = u/v, and u and v are positive constants. The difference between the 
first-order upwind and the skew upwind schemes [lo] is analyzed here to show 
some basic characteristics of the numerical diffusion. The first-order upwind 
approximation to Eq. (18a) at the grid point (i,j) may be written as follows: 

where 
v Ax a=--. 
u AY 

Wa) 

(19b) 

Equation (19a) shows that dii is calculated by linearly interpolating between dip l,j 
and 4i,i- I at the point where the straight line connecting the grid points (i - 1, j) 
and (i, j - 1) intersects the velocity vector at the point (i, j). It is known that when 
convection dominates in establishing the spatial distribution of the quantity 4, the 



432 WE1 SHYY 

directional derivative of 4 in the streamwise direction vanishes, and the cross-flow 
derivative depends on the upstream boundary conditions. From Eq. (19a) it is clear 
that the first-order upwind gives the exact solution if the exponent n in Eqs. (18b, c) 
is unity; otherwise, the error resulting from the linear interpolation in Eq. (19a) will 
cause numerical diffusion in the cross-stream direction. With this recognition, 
Raithby [lo] devised the following scheme to approximate Eq. (18a) more closely: 

u 4i+ l/Z,j - di- ll2.j + u 4&j+ l/2 - di,j- l/2 = o 

Ax AY 
> 

where 

4i + ll2,j = 4i,j- (4&j-#i,j- 1) tr 

#i,j+ I/2 = #i,j-(4i,j-4i-l,,)&3 

ri,j-,,=ri.j-,-oi,j-,-,i~~.j-~)~. 

Equation (20a) can be rewritten as follows: 

4 ,a Assumed 
Profile for 

+ in Upstream 

- Y-(~-~)AY 

/ k 
+i,j Calculated Yp 
by First Order 

Upwind 
4i,i Calculated by Skew Upwind 

(204 

(21) 

FIG. 5. Comparison of accuracy between first-order upwind and skew upwind approximations to 
Eq. (18a) (lines 1 and 2 are parallel). 
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Figure 5 compares the way to calculate Qi,j by the first-order upwind scheme with 
that by the skew upwind scheme. It can be seen that, although both schemes are 
formally exact only for a linear variation of the 4 profile in the cross-stream direc- 
tion, the du calculated by the skew upwind scheme can be a substantial 
improvement over that calculated by the first-order upwind scheme. As to the 
second-order upwind and QUICK schemes, both are exact for a quadratic profile 
of 4 in the cross-stream direction. 

Figure 6 shows the numerical solutions to Eqs. (20) by the four schemes: first- 
order upwind, skew upwind, second-order upwind, and QUICK, for n= 2 and 
cot 13 = 2. The skew upwind scheme is used to calculate the first unknowns from the 
upstream boundaries for both the second-order upwind and QUICK. In addition, 
the downstream boundary conditions are also needed by QUICK and the skew 
upwind scheme is also used there. In Fig. 6, the grid points connected by any single 
streamline should possess the same value of 4. While the first-order upwind scheme 
gives solutions with some noticeable numerical cross-stream diffusion, all other 
three schemes give very good approximations. It is noted that the small errors 
appearing in the solution by QUICK are caused by the calculation for the 
downstream boundary values. Figure 6 demonstrates that the first-order skew 

u = 2v 
Number of Meshes in x-direction = 10 

4 
y-direction = 10 

64 

49 

36 

I-115L “lull 

Second Order 

18 

,Wll 

UP Iwind 

1 4 9 16 25 

FIG. 6. Numerical solutions to Eq. (18) for n = 2. 
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FIG. 7. Numerical solutions to Eq. (18) (upstream boundary conditions: (6(0, y) = 100, O<y< 1, 
q%(x.0)=0, OCx<l). 

upwind differencing can reduce the cross-stream numerical diffusion substantially. 
Figure 7 shows the numerical solutions by the four schemes for the same equation 
but with a more stringent upstream boundary condition; a step function, instead of 
an nth-power polynomial, is used. Here, again, because of the importance of the 
high-wavenumber Fourier components to the real solution, no scheme is able to 
give a very accurate approximation; the sharp variation in the real solution is 
smeared out due to the numerical diffusion. Also, the solutions by the skew upwind, 
second-order upwind, and QUICK schemes all exhibit over-shoots; the solution by 
QUICK also exhibits under-shoot. Globally speaking, QUICK and the second- 
order upwind schemes perform better here. 

After examining the possible error caused by the numerical approximations to 
the convection terms, a two-dimensional flow problem including both convection 
and diffusion terms, as stated in the following, is considered next: 

4x + tidy = v(4xx + iyyh Odxbl, O<yYl, Wa) 

w, Y) = 1w O<YGL Wb) 

4(x, 0) = 0, O<x<l, WC) 
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UAX - = 40 Y 
” = 2v 

x-direction = 11 
Number of Grid Points in ydirection = 11 

FIG. 8. Numerical solutions to Eq. (21) at x = 1 - 2 Ax (downstream boundary conditions: zero dif- 
ferences between upstream and downstream boundary values). 

where u and u are positive constants; the parameters u/u = 2, and cell Peclet number 
based on u Ax/v = 40 are used in the study. Two different downstream conditions 
are investigated. (1) Convection of the upstream values along the streamlines, i.e., 
4(x, l)=lOO for O<x<l; @(l,y)=O for O<y<& d(l,y)=lOO for $<y<l, and 
q5( 1, 4) = 50. This type of boundary condition has been used by Raithby [lo]. (2) 
Zero value of 4 along all the downstream boundary. Five numerical schemes, lirst- 
order upwind, skew upwind, second-order central differencing, second-order 
upwind, and QUICK, are compared in this test problem. 

For the first kind of downstream boundary condition, i.e., the zero differences 
between the upstream and the downstream boundary values along a streamline, a 
typical prolile of 4, plotted as a function of y at x = 1 - 2 Ax, given by the 
numerical approximations is shown in Fig. 8. The profile by the first-order upwind 
is the smoothest one due to the excessive numerical diffusion. The solution by the 
second-order central differencing, on the other hand, shows wiggles in the flow 
region. The other three schemes all produce solutions with a limited amount of 
over-shoot near the downstream boundary. Among them, the solutions by QUICK 
and by the second-order upwind scheme are more satisfactory. The difference 
between the true solution for the first kind of boundary condition and the true 
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X Skew Upwind 

Point 

FIG. 9. Numerical solutions to Eq. (21) at x= 1 - 2 Ax (downstream boundary conditions: )=O). 

solution for the second kind of downstream boundary condition, i.e., 4 = 0, for high 
P edx flow should be of the character that a boundary layer region is formed in the 
vicinity of the downstream boundary, with the solution in the main region of the 
flow field basically the same. The solutions by the live numerical schemes for this 
problem are compared in Fig. 9. Those by the second-order central differencing and 
by QUICK show unacceptably large magnitude of oscillation. The solutions by the 
three upwind schemes are, compared to those in Fig. 8, unaffected by the change of 
the boundary condition except for the points in the far downstream. In this case, 
the best scheme is the second-order upwind, which shows a reasonable compromise 
between an accurate simulation in the convection-dominated region and an effective 
enhancement to the diffusion term in the boundary layer region which prevents the 
disturbances from propagating. 

6. SUMMARY AND CONCLUSIONS 

Five different finite difference schemes, first-order upwind, skew upwind, second- 
order upwind, second-order central differencing, and QUICK, approximating the 
convection terms in the equation governing fluid motion, have been studied. It is 
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shown that in a finite difference simulation with large cell Peclet number, the high- 
wavenumber Fourier components of the real solutions cannot be evaluated 
accurately. As a result of this, in a convection-dominated flow, if the viscous terms 
are required to balance the convection terms in a thin layer close to the 
downstream boundary due to, for example, a Dirichlet-type boundary condition 
being applied there, a finite difference approximation can, at best, use the trun- 
cation errors of the approximations to help damp out the disturbances in that thin 
layer. The detailed structure of the real solution is unresolved. Even this may or 
may not be accomplished by a given scheme, and hence for high cell Peclet number 
flow the formal order of accuracy is a poor criterion to judge the performances 
among different schemes. 

Among all of the five schemes tested in this study, the second-order upwind 
scheme gives the most satisfactory results in general; this scheme has been found, 
however, to still exhibit over-shoot in the solution to a limited extent. On the other 
hand, although both the second-order central differencing and QUICK are formally 
of the same order of accuracy as the second-order upwind, they fail to enhance the 
viscous terms properly in the region where needed for a high cell Peclet number 
flow problem, and noticeable spurious oscillations in the numerical solutions 
appear. It should be noted that the magnitudes of those spurious oscillations in the 
solutions by QUICK are generally less serious than those by the second-order cen- 
tral differencing. Furthermore, if no boundary layer region exists in the real 
solution, the accuracy of the approximating solutions given by QUICK and that by 
the second-order upwind scheme are comparable. As to the first-order upwind 
scheme, it is free from producing the unphysical over- and under-shoots in the 
solutions for all the test problems, but it fails to give accurate approximations in 
the presence of a source term [9] and shows too much numerical diffusion in the 
convection-dominated region for a multi-dimensional flow. The skew upwind 
scheme is able to reduce the numerical diffusion by the first-order scheme in the 
cross-stream direction substantially, but it is found to be less satisfactory than the 
second-order upwind scheme. The skew upwind scheme also fails to give accurate 
solutions in the presence of source terms [lo]. 
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